1.下载R
1.1 下载URL:https://cran.r-project.org/src/base/R-3/
1.2 环境变量配置
1.3 测试安装:
2.下载Rtools33
URL:https://cran.r-project.org/bin/windows/Rtools/
2.1 配置环境变量
2.2 测试安装成功
3.安装RStudio
URL: https://www.rstudio.com/products/rstudio/download/
直接下一步即可安装
4.安装JDK并设置环境变量
4.1环境变量配置:
4.2测试:
5.下载Spark安装程序
5.1 URL: http://spark.apache.org/downloads.html
5.2解压到本地磁盘的对应目录
6.安装Spark并设置环境变量
7.测试SparkR
注意:如果发现了提示 WARN NativeCodeLader:Unable to load native-hadoop library for your platform.....using
builtin-java classes where applicable 需要安装本地的hadoop库
8.下载hadoop库并安装
URL: http://hadoop.apache.org/releases.html
9.设置hadoop环境变量
10.重新测试SparkR
10.1 如果测试时候出现以下提示,需要修改log4j文件INFO为WARN,位于\spark\conf下
10.2 修改conf中的log4j文件:
10.3 重新运行SparkR,输出就会变少
11.运行SprkR代码
在Spark2.0中增加了RSparkSql进行Sql查询
dataframe为数据框操作
data-manipulation为数据转化
ml为机器学习
11.1 使用crtl+ALT+鼠標左鍵 打开控制台在此文件夹下
11.2 执行spark-submit xxx.R文件即可
12.安装SparkR包
12.1 将spark安装目录下的R/lib中的SparkR文件拷贝到..\R-3.3.2\library中,注意是将整个Spark文件夹,而非里面每一个文件。
源文件夹:
目的文件夹:
12.2 在RStudio中打开SparkR文件并运行代码dataframe.R文件,采用Ctrl+Enter一行行执行即可
SparkR语言的dataframe.R源代码如下
## Licensed to the Apache Software Foundation (ASF) under one or more# contributor license agreements. See the NOTICE file distributed with# this work for additional information regarding copyright ownership.# The ASF licenses this file to You under the Apache License, Version 2.0# (the "License"); you may not use this file except in compliance with# the License. You may obtain a copy of the License at## http://www.apache.org/licenses/LICENSE-2.0## Unless required by applicable law or agreed to in writing, software# distributed under the License is distributed on an "AS IS" BASIS,# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.# See the License for the specific language governing permissions and# limitations under the License.#library(SparkR)# Initialize SparkContext and SQLContextsc <- sparkR.init(appName="SparkR-DataFrame-example")sqlContext <- sparkRSQL.init(sc)# Create a simple local data.framelocalDF <- data.frame(name=c("John", "Smith", "Sarah"), age=c(19, 23, 18))# Convert local data frame to a SparkR DataFramedf <- createDataFrame(sqlContext, localDF)# Print its schemaprintSchema(df)# root# |-- name: string (nullable = true)# |-- age: double (nullable = true)# Create a DataFrame from a JSON filepath <- file.path(Sys.getenv("SPARK_HOME"), "examples/src/main/resources/people.json")peopleDF <- read.json(sqlContext, path)printSchema(peopleDF)# Register this DataFrame as a table.registerTempTable(peopleDF, "people")# SQL statements can be run by using the sql methods provided by sqlContextteenagers <- sql(sqlContext, "SELECT name FROM people WHERE age >= 13 AND age <= 19")# Call collect to get a local data.frameteenagersLocalDF <- collect(teenagers)# Print the teenagers in our dataset print(teenagersLocalDF)# Stop the SparkContext nowsparkR.stop()
13.Rsudio 运行结果
补充:SparkR自带机器学习的例子:(D:\......\spark-1.6.0-bin-hadoop2.6\spark-1.6.0-bin-hadoop2.6\examples\src\main\r)
源代码如下:
1 # 2 # Licensed to the Apache Software Foundation (ASF) under one or more 3 # contributor license agreements. See the NOTICE file distributed with 4 # this work for additional information regarding copyright ownership. 5 # The ASF licenses this file to You under the Apache License, Version 2.0 6 # (the "License"); you may not use this file except in compliance with 7 # the License. You may obtain a copy of the License at 8 # 9 # http://www.apache.org/licenses/LICENSE-2.010 #11 # Unless required by applicable law or agreed to in writing, software12 # distributed under the License is distributed on an "AS IS" BASIS,13 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.14 # See the License for the specific language governing permissions and15 # limitations under the License.16 #17 18 # To run this example use19 # ./bin/sparkR examples/src/main/r/ml.R20 21 # Load SparkR library into your R session22 library(SparkR)23 24 # Initialize SparkContext and SQLContext25 sc <- sparkR.init(appName="SparkR-ML-example")26 sqlContext <- sparkRSQL.init(sc)27 28 # Train GLM of family 'gaussian'29 training1 <- suppressWarnings(createDataFrame(sqlContext, iris))30 test1 <- training131 model1 <- glm(Sepal_Length ~ Sepal_Width + Species, training1, family = "gaussian")32 33 # Model summary34 summary(model1)35 36 # Prediction37 predictions1 <- predict(model1, test1)38 head(select(predictions1, "Sepal_Length", "prediction"))39 40 # Train GLM of family 'binomial'41 training2 <- filter(training1, training1$Species != "setosa")42 test2 <- training243 model2 <- glm(Species ~ Sepal_Length + Sepal_Width, data = training2, family = "binomial")44 45 # Model summary46 summary(model2)47 48 # Prediction (Currently the output of prediction for binomial GLM is the indexed label,49 # we need to transform back to the original string label later)50 predictions2 <- predict(model2, test2)51 head(select(predictions2, "Species", "prediction"))52 53 # Stop the SparkContext now54 sparkR.stop()
运行结果:
END~